Practice reading and writting data, more dplyr and a plot.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file.
Read the data into R and assign it to emissions
.
file_csv <- here("_posts",
"2021-02-24-reading-and-writting-data",
"co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions
emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
emissions
data THEN use claen_names
from the janitor package to make the names easier to work with assign the output to tidy_emissions
show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>% clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
tidy_emissions
THEN use filter
to extract rows with year==1984
THEN use skim
to calculate the descriptive statisticsName | Piped data |
Number of rows | 209 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 209 | 0 |
code | 12 | 0.94 | 3 | 8 | 0 | 197 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1984.00 | 0.0 | 1984.00 | 1984.00 | 1984.0 | 1984.00 | 1984.0 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 5.31 | 8.3 | 0.04 | 0.51 | 2.4 | 7.55 | 75.6 | ▇▁▁▁▁ |
tidy_emissions
then extract rows with year==1984
and are missing a code# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1984 1.23
2 Asia <NA> 1984 1.74
3 Asia (excl. China & India) <NA> 1984 2.71
4 EU-27 <NA> 1984 9.08
5 EU-28 <NA> 1984 9.11
6 Europe <NA> 1984 10.5
7 Europe (excl. EU-27) <NA> 1984 12.5
8 Europe (excl. EU-28) <NA> 1984 13.2
9 North America <NA> 1984 13.3
10 North America (excl. USA) <NA> 1984 5.04
11 Oceania <NA> 1984 10.7
12 South America <NA> 1984 1.87
tidy_emissions
THEN use filter
to extract rows with year==1984
and without missing codes THEN use select
to drop the year
variable THEN use rename
to change the variable entity
to country
assign the output to emissions_1984
per_capita_co2_emissions
? start with emissions_1984
THEN use slice_max
to extract the 15 rows with the per_capita_co2_emissions
assign the output to max_15_emitters
max_15_emitters <- emissions_1984 %>% slice_max(per_capita_co2_emissions, n=15)
per_capita_co2_emissions
? start with emissions_1984
THEN use slice_min
to extract the 15 rows with the lowest values assign to output min_15_emitters
min_15_emitters <- emissions_1984 %>% slice_min(per_capita_co2_emissions, n=15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
assign output to max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 file formatsmax_min_15 %>% write_csv("max_min_15.csv") # comma separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim= "I") # pipe separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "I") # pipe separated
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
and max_min_14_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
country
in max_min_15
for plotting and assign to max_min_15_plot_data
start with emissions_1984
THEN use mutate
to reorder country
according to per_capita_co2_emissions
max_min_15_plot_data <- max_min_15 %>%
mutate(country=reorder(country, per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data=max_min_15_plot_data,
mapping=aes(x=per_capita_co2_emissions, y=country)) + geom_col() +
labs(title = "The top 15 and bottom 15 per captia CO2 emissions",
subtitle = "for 1984",
x=NULL,
y=NULL)
ggsave(filename = "preview.png",
path = here("_posts", "2021-02-24-reading-and-writting-data"))
preview.png
to yaml chuck at the top of this filepreview: preview.png